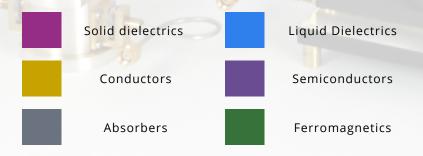


CATALOG


MICROWAVE MATERIAL TESTING

www.qwed.eu

Table of Contents

1. Split-Post Dielectric Resonator	3
2. Fabry-Perot Open Resonator for Dielectrics	4
3. D-Band Fabry-Perot Open Resonator for Dielectrics	6
4. Q-Choke Split Cylinder Resonator	8
5. TE01δ-Mode Dielectric Resonator	9
6. Dielectric/Cavity Resonators for Liquids	10
7. Fabry-Perot Open Resonator for Liquids	11
8. Single-Post Dielectric Resonator	13
9. Dielectric Resonator for Conductors	14
10. Fabry-Perot Open Resonator for Conductors	15
11. MPR subwavelength, ferromagnetics	17
12. MPR Cavity for Ferromagnetics	
13. Resonator for Conductive Wires	19
14. 2D Scanners	20
15. Q-Meters	22

Color Legend by materials:

Split-Post Dielectric Resonator

Dielectrics

SPDR non-destructively measures in-plane εr and tan δ of flat dielectric sheets.

The split-post resonator quantifies ϵr and ϵr and ϵr and ϵr laminates and composites.

Ultra-Thin Films

Using a film-on-substrate approach, SPDR resolves micrometer-scale coatings by tracking tiny shifts in resonance frequency and Q-factor.

Higly-Resistive Semiconductors

SPDR measures εr and tanδ of highresistivity Si/SiC; if the loss is mainly conductive, it also yields bulk resistivity (ρ).

Parameters

Frequency range:1.1 - 15 GHz*

• Dielectric constant: **Dk = 1 - 100** (achievable accuracy \pm 0.15%)

Loss tangent: $Df > 2 \times 10^{-5}$ (achievable accuracy $\leq 2\%$)

• Resistivity: $\rho = 10^2 - 10^4 \,\Omega \cdot \text{cm}$

• Maximum sample thickness: **0.6 - 6 mm** (depends on frequency)

• Sample diameter: 14 - 120 mm (depends on frequency)

Measurement time: < 30 seconds

• Temperature: room, 0 - 110 °C

• Supported standards: IEC 61189-2-721 (04-2015); IPC-TM-650 2.5.5.15

Suitable for low-loss dielectrics, high-resistivity semiconductors & thin films

^{*}Each SPDR is manufactured for a single nominal frequency (1.1, 2.45, 5, 10 or 15 GHz). Other frequencies within 1.1 – 15 GHz are available on request.

Fabry - Perot Open Resonators for Dielectrics

Dielectrics

Non-contact FPOR measurements deliver ε and tanδ of bulk dielectrics.

Polymers

0000

The open resonator quantifies ϵ and tan δ of low-loss polymer sheets without electrodes.

Ultra-Thin Films

FPOR resolves dielectric properties of films just a few µm thick by analysing minute Q-factor shifts,

<u>Q</u>

Higly-Resistive Semiconductors

extracts bulk resistivity of semiconductors like Si or SiC.

Parameters

Frequency range:

Dielectric constant:

Loss tangent:

Sample thickness:

Sample diameter:

Measurement time:

Temperature:

10 - 130 GHz*

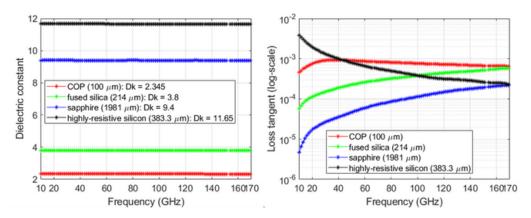
Dk = 1 - 15 (achievable accuracy ± 0.25 %)

Df > 5 × 10⁻⁶ (achievable accuracy \pm 2 %)

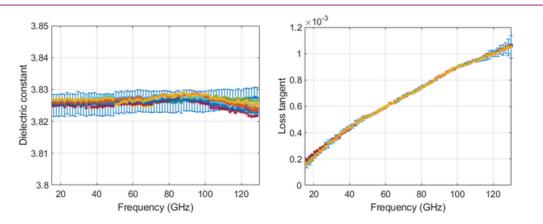
1 µm - 3 mm

50 - 150 mm

> 1 minute


room, 0 - 80 °C (on request)

In-plane anisotropic materials can be measured


• Fully automated and software-controlled measurement

*Available also in various frequency-range configurations (e.g. 10 - 26.5 GHz, 10 - 43 GHz, 10 - 50 GHz, 10 - 67 GHz, 10 - 110 GHz, etc.)

Measurement Results

Overview of the FPOR measurement capabilities. Unique possibility of having a single measurement fixture for the whole 10-170 GHz range.

Fused silica wafer (148.15 \pm 0.36 μ m) measured 10 times, each time removing and inserting the sample again. Dk uncertainty bars arise from thickness uncertainty; Df bars from signal-to-noise ratio. Outstanding Dk repeatability of 0.15 %!

D-Band Fabry-Perot Open Resonator for Dielectrics

Dielectrics

Non-contact FPOR measurements deliver ϵ and $tan\delta$ of bulk dielectrics.

Polymers

The open resonator quantifies ϵ and tan δ of low-loss polymer sheets without electrodes.

Ultra-Thin Films

FPOR resolves dielectric properties of films just a few µm thick by analysing minute Q-factor shifts,

Q

Higly-Resistive Semiconductors

extracts bulk resistivity of semiconductors like Si or SiC.

Parameters

Frequency range:

Dielectric constant:

Loss tangent:

Sample thickness:

Sample diameter:

Measurement time:

Temperature:

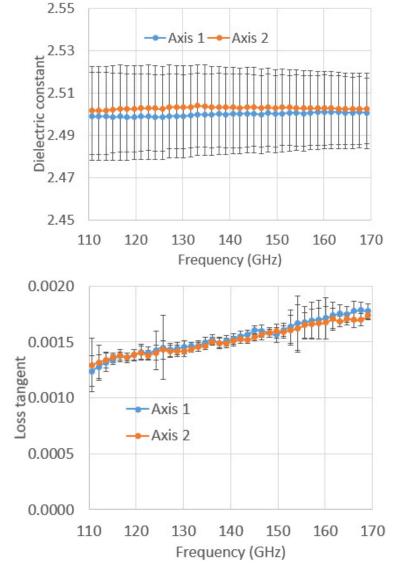
110 - 170 GHz

Dk = 1 - 15 (achievable accuracy ± 0.5 %)

Df > 5 × 10⁻⁶ (achievable accuracy \pm 5 %)

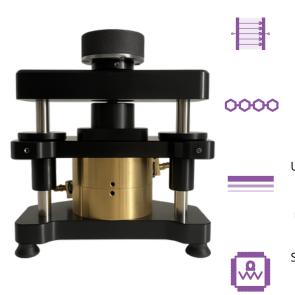
1 µm - 3 mm

> 50 mm


> 3 minutes

room

• In-plane anisotropic materials can be measured


• Fully automated and software-controlled measurement

Measurement Results

Overview of the D-Band FPOR measurement capabilities.

Q-Choke Split Cylinder Resonator

Dielectrics

SPDR non-destructively measures in-plane εr and tan δ of flat dielectric sheets.

Polymers

The split-post resonator quantifies ϵr and $\tan \delta$ of low-loss polymer laminates and composites.

Ultra-Thin Films

Using a film-on-substrate approach, SPDR resolves micrometer-scale coatings by tracking tiny shifts in resonance frequency and Q-factor.

Higly-Resistive Semiconductors

SPDR measures εr and tanδ of highresistivity Si/SiC; if the loss is mainly conductive, it also yields bulk resistivity (ρ).

Parameters

Frequency range:

Dielectric constant:

Loss tangent:

Sample size:

Sample thickness:

Supported standards:

10 GHz (higher frequencies coming soon...)

Dk = 1-15 (achievable accuracy ± 0.2%)

Df > 5 × 10^{-6} (achievable accuracy ± 2%)

40 × 40 mm - 100 × 100 mm

5 μm to 4 mm (e.g., sapphire)

IPC TM-650 2.5.5.13

TE01δ-Mode Dielectric Resonators

Ceramics

Ultra low-loss materials

High dk testing

Microwave resonators. filters. etc.

Cryogenic temperatures

Uniquly accurate measurements at low temperatures

TCK & TCF extraction

Up to 125 °C or higher with customdesigns

Parameters

Loss tangent:

Frequency range: Depends on dielectric constant and

dimensions of the sample

Dielectric constant: **Dk = 1 - 1000** (achievable accuracy < 0.2%)

Df = 10^{-2}- 10^{-4} (achievable accuracy < 2%)

• Temperature: -270 °C - 125 °C (higher temperature on request)

Fabry-Perot Open Resonator for Liquids

Electronic Coolant

highly sensitive measurement of ER and tan δ in low-loss fluorinated liquids (e.g., Fluorinert FC-40).

broadband determination of complex permittivity for vegetable lubricating oils.

liquids hidden molecular dynamics by mapping how their dielectric constant and loss tangent

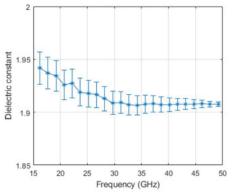
change with frequency.

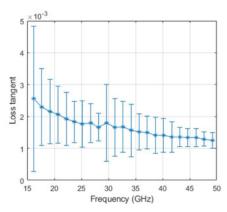
Reveal

Parameters

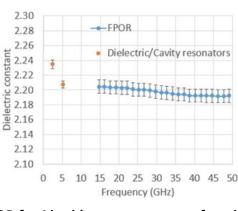
Frequency range: 15 - 67 GHz

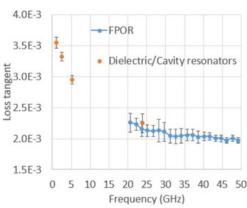
Dielectric constant: **Dk = 1 - 15** (achievable accuracy < 0.5 %)

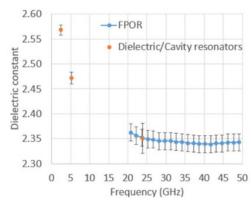

Df > 1 × 10^{-4} (achievable accuracy < 2 %) Loss tangent:

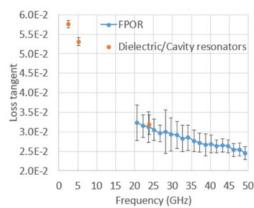

Temperature: room

Required fluid volume: < 10 mL


Fully automated and software-controlled measurement


Measurement Results




FPOR for Liquid results for 3M Fluoroinert FC-40.

FPOR for Liquid measurements of engine oil versus dielectric/cavity-resonator

FPOR for Liquid measurements of canola oil versus dielectric/cavity-resonator

Dielectric/Cavity Resonators for Liquids

Electronic Coolant

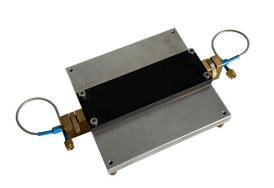
highly sensitive measurement of ϵR and tan δ in low-loss fluorinated liquids (e.g., Fluorinert FC-40).

Dil

broadband determination of complex permittivity for vegetable or lubricating oils.

Reveal liquids hidden molecular dynamics by mapping how their dielectric constant and loss tangent change with frequency.

Parameters


Frequency range: 1 GHz, 2.5 GHz, 5 GHz, 2.5 & 5 GHz, 10 GHz, 24 GHz

• Dielectric constant: **Dk = 1 - 100** (achievable accuracy < 0.5 %)

• Loss tangent: **Df > 1 × 10^{-4}**(achievable accuracy < 2 %)

• Temperature: 0 - 100 °C

Single-Post Dielectric Resonator

Conductive Composites

the dielectric properties of composite films just a few micrometers thick

Semiconductors

The SiPDR resonator extracts the bulk resistivity of semiconductor wafers (e.g., SiC) from 10 Ω·cm up to several hundred Ω·cm.

Metamaterials

Contact-less SiPDR measurements deliver dielectric loss data for engineered negative-index metamaterial structures.

Parameters

Frequency range: 5 GHz (other bands on request)

• Resistivity (bulk) $\rho = 10^{-4} - 10^{3} \Omega \cdot cm (accuracy \pm 2 \%)$

• Surface resistance (thin films): $Rs = 10^{-1} - 2 \times 10^4 \Omega/sq$ (accuracy $\pm 2 \%$)

• Sample thickness: few µm to 1 mm

• Sample diameter: 30 - 90 mm

Temperature: 0 - 110 °C

• Suitable for lossy thin films, resistive layers & doped semiconductor wafers

Fabry-Perot Open Resonator for Conductors

rigid sheets or plates of highly-conductive metals (e.g., copper, silver, aluminium).

Conductive Foils

thin, flexible metal foils such as rolled copper; the resonator probes their surface conductivity even at micrometre-level thicknesses.

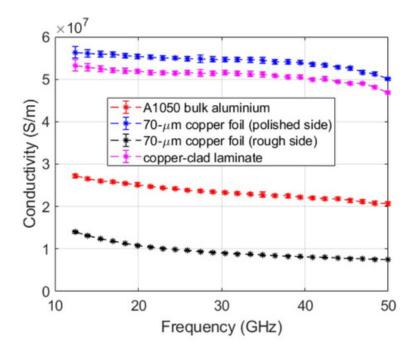
Copper-Clad Laminates

PCB-grade dielectric panels coated with copper; the instrument measures the electrical conductivity of the copper.

Parameters

Frequency range: 12 - 50 GHz

• Conductivity: $\sigma = 5 \times 10^4 - 6 \times 10^7 \text{ S/m}$ (achievable accuracy < 5%)


Sample thickness: ≥ 5 skin depths (e.g., a few µm for Cu)

• Sample diameter: **150 - 195 mm**

Measurement time: a few minutes

· Fully automated and software-controlled measurement

Fabry-Perot Open Resonator for Conductors

The FPOR for Conductors system measures conductive samples such as bulk aluminium, copper foils with different surface roughness, and copper-clad laminates across the 12 - 50 GHz range.

Dielectric Resonator for Conductors

rigid sheets or plates of highly-conductive metals (e.g., copper, silver, aluminium).

Conductive Foils

thin, flexible metal foils such as rolled copper; the resonator probes their surface conductivity even at micrometre-level thicknesses.

Copper-Clad Laminates

PCB-grade dielectric panels coated with copper; the instrument measures the electrical conductivity of the copper.

Parameters

• Frequency range: 14 & 20 GHz or 28 & 44 GHz

• Conductivity: $\sigma = 10^5 - 6 \times 10^7 \text{ S/m}$

• Sample thickness: ≥ 3 skin depths (e.g., a few µm for Cu)

• Sample size: ≥25 x 25 mm

MPR Subwavelength cavity for Ferromagnetics

Spheres

The device is equipped is based on a novel electrodynamic model extracting ΔH of the material under test from the frequency and Q-factor of the magnetic-plasmon-resonance (MPR) of the sphere measured for a given vertical position of the magnet knob.

Parameters

Frequency range:
5 - 9 GHz (standard; extended 2 - 18 GHz*)

Usable cavity range: Up to ~60 GHz**

Magnetic bias: Hand-held tunable magnet

• Sample diameter: D < 0.6 mm

Linewidth capability (ΔH): < 0.25 Oe @ 2 GHz

< 5 Oe @ 5 GHz

<30 Oe @ 18 GHz

• Temperature: room

^{*} Extended 2 - 18 GHz operation via spacer sleeves and cavity support changes.

^{**} Cavity acts as a mechanical holder up to ~60 GHz; operation beyond 18 GHz requires stronger magnetic bias (e.g., external magnet).

MPR Cavity for Ferromagnetics

Spheres

The device is equipped is based on a novel electrodynamic model extracting ΔH of the material under test from the frequency and Q-factor of the magnetic-plasmon-resonance (MPR) of the sphere measured for a given vertical position of the magnet knob.

Parameters

Nominal frequency:

• Magnetic bias:

Sample type:

Sample diameter:

• Temperature:

5 GHz (option: 10 GHz*)

Hand-held tunable magnet

Low-magnetic-loss ferrite spheres

D < 1.5 mm (quartz tube holder)

room

Measurability examples:

 $\Delta H = 0.2 \text{ Oe}, D = 0.5 \text{ mm}, Ms = 1800 \text{ Gs}$

 $\Delta H = 3 \text{ Oe, D} = 1.4 \text{ mm, Ms} = 1200 \text{ Gs}$

 $\Delta H = 16 \text{ Oe}, D = 1.2 \text{ mm}, Ms = 1700 \text{ Gs}$

 $\Delta H = 20 \text{ Oe}, D = 1.0 \text{ mm}, Ms = 1800 \text{ Gs}$

(no mode splitting)

Resonator for Conductive Wires

Parameters

Frequency range:

• Wire parameters:

Conductive Wires

Fast GHz cavity test for thin wires: clamp once, get conductivity (σ) and effective diameter in seconds.

from 37 GHz up to 70 GHz

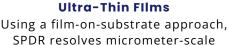
Diameter: 100 - 450 μm

Length: > 10 cm

Conductivity: $\sigma > 10 \text{ S/m}$

Maximum achievable accuracy: < 1%

2D Split-Post Dielectric Resonator



Dielectrics

SPDR non-destructively measures in-plane ϵr and $\tan \delta$ of flat dielectric sheets.

The split-post resonator quantifies ϵr and $\tan \delta$ of low-loss polymer laminates and composites.

coatings by tracking tiny shifts in resonance frequency and Q-factor.

Higly-Resistive Semiconductors

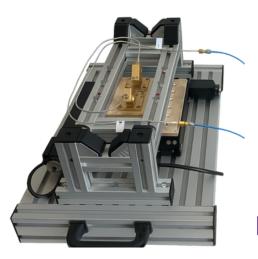
SPDR measures εr and tanδ of highresistivity Si/SiC; if the loss is mainly conductive, it also yields bulk resistivity (ρ).

Parameters

• Frequency range: 10 GHz

• Conductivity: $0.1 - 10^6 1/(\Omega \cdot m)$

• Resistivity (bulk) $\rho = 10^{-4} - 10^{3} \Omega \cdot cm$


• Surface resistivity (thin films): $Rs = 10^{-1} - 2 \times 10^4 \Omega/sq$

• Sample size: up to 80 × 120 mm

• Sample thickness: few µm up to 1 mm

Fully automated, software-controlled measurement

Single-Post Dielectric Resonator

Conductive Composites

the dielectric properties of composite films just a few micrometers thick

Semiconductors

The SiPDR resonator extracts the bulk resistivity of semiconductor wafers (e.g., SiC) from 10⁻⁴ Ω·cm up to several hundred Ω·cm.

Metamaterials

Contact-less SiPDR measurements deliver dielectric loss data for engineered negative-index metamaterial structures.

Parameters

Frequency range: 10 GHz

• Resistivity (bulk) $\rho = 10^{-4} - 10^{3} \Omega \cdot cm (accuracy \pm 2 \%)$

• Surface resistance (thin films): $\mathbf{Rs} = \mathbf{10}^{-1} - \mathbf{2} \times \mathbf{10}^{4} \Omega/\mathbf{sq}$ (accuracy $\pm 2\%$)

• Sample thickness: few μm to 1 mm

• Sample diameter: up to 100 x 100 mm

• Measurement time: ≪ 1 minute

• Suitable for lossy thin films, resistive layers & doped semiconductor wafers

• Fully automated, software-controlled measurement

Microwave Frequency Q-Meter

Fast & Easy testing

USB-connected Windows application provides real-time parameter adjustment.

SPDR & SiPDR dedicated

Portable material testing setup.

Alternative to VNA

For materials testing

Parameters

- Interface (data and power):
- Power consumption:
- Accuracy of measurement:
- · Range of measured Q-factor:
- Frequency range:
- · Frequency resolution:
- Frequency stability:
- Output power:
- Range of input power:

USB-C (connect to USB 3.0 port)

5 V, 900 mA

Q: 2% for Q > 1000 F: 2.5 ppm

200 ÷ 100 000

8.4 GHz ÷ 10.4 GHz

1 kHz

2.5 ppm

1 dBm ± 3 dBm

-80 dBm ÷ -30 dBm

Parameters

- Interface (data and power):
- Power consumption:
- Accuracy of measurement:
- Range of measured Q-factor:
- Frequency range:
- Frequency resolution:
- Frequency stability:
- Output power:
- Range of input power:
- Measurement time:

Fast & Easy testing

USB-connected Windows application provides real-time parameter adjustment.

SPDR & SiPDR dedicated

Portable material testing setup.

Alternative to VNA

For materials testing

Mini-USB (connect to USB port)

5 V, ~400 mA

ε: 1% for Q > 1000

 $\Delta \tan \delta = \pm 2.10^{-5} \text{ or } \pm 0.03. \tan \delta$

200 ÷ 100 000

Type 1: 4.4 GHz ÷ 5.2 GHz,

Type 2: 1.4 GHz ÷ 2.6 GHz,

Type 3: 0.7 GHz ÷ 1.3 GHz

1 kHz

2.5 ppm

12 dBm ± 3 dBm

-55 dBm ÷ -5 dBm

< 10 s

MICROWAVE MATERIAL TESTING

www.qwed.eu

QWED DELIVERS PRECISION ELECTROMAGNETIC MATERIALS CHARACTERIZATION: RESONATOR FIXTURES AND AUTOMATED SETUPS THAT EXTRACT DK/DF, CONDUCTIVITY/SHEET RESISTANCE, AND TEMPERATURE DEPENDENCES ACROSS RF-MMWAVE BANDS. EXPLORE MEASUREMENT WORKFLOWS AND SERVICES AT QWED.EU. INFORMATION IS SUBJECT TO CHANGE WITHOUT NOTICE. © QWED SP. Z O.O., 1997–2025.