

NCBR  
National Centre for Research and Development

I4Bags

5G  
Foil  
QWED

MATERIA NOVA



# Surface Resistance Mapping of Graphite Battery Cathodes with a 10 GHz Inverted Single Post Dielectric Resonator Scanner

Authors: Lukasz Nowicki<sup>1,2</sup>, Corinne Nouvellon<sup>3</sup>,  
Malgorzata Celuch<sup>1</sup>, Fabien Monteverde<sup>3</sup>,  
Bartlomiej Salski<sup>1</sup>  
Affiliations: 1QWED Sp. z o.o., Warsaw, Poland  
2Warsaw University of Technology, Poland  
3Materia Nova, Belgium

## ABSTRACT

We present an integrated microwave method for characterising graphene-based films that combines classical single-post and split-post dielectric resonators with a two-dimensional imaging single-post resonator. Free-standing graphene oxide and chemically reduced graphene oxide produced by a modified Hummers process were first benchmarked in stand-alone fixtures at five and ten gigahertz. The study is then extended to two-dimensional imaging, which uses numerical electromagnetic calibration and automated horizontal scanning to generate millimetre-resolution maps of sheet resistance across twenty-by-twenty-millimetre samples. The split-post resonator recorded a density-dependent real permittivity between six point eight and seven point four and a loss tangent up to zero point zero three five for graphene oxide, while the single-post resonator showed that chemical reduction increases conductivity by about three orders of magnitude. Imaging revealed clear in-plane gradients; the reduced material displayed a sheet resistance that differed by only three percent between the two approaches yet showed noticeably lower spatial uniformity. The combined workflow links bulk and local microwave responses and offers a practical route for optimising graphene-based coatings for shielding applications.

### B. Dual-Mode ruby resonator for validation

A cylindrical ruby dielectric resonator (RuDR) operates at TE011 mode near 13.8 GHz and TE021 at 20.1 GHz. Two metallic (conductive) samples of ca. 20 mm × 20 mm are placed to form the bottom and cover boundary conditions for the resonator. Loading the resonator with those samples perturbs its Q-factor, due to changes of loss in the resonator walls. The change of Q-factor is converted to Rs via retro-modelling, based on BoR FDTD, as in the iSiPDR case. Samples are measured with the coated side and the bare-Cu side facing the cavity, furnishing traceable spot values for scanner cross-checks [10]. Repeatability is ±0.5%.

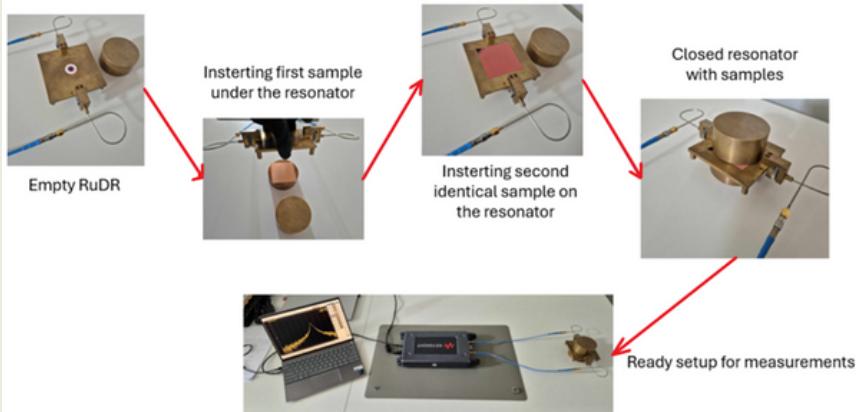



Fig. 3 Material Measurement Procedure on Dual-Mode Ruby Dielectric Resonator.



Fig. 2 Electrodes under test - Graphite on Copper foil

## ACKNOWLEDGMENTS

This work was supported by the Polish National Centre for Research and Development under contracts M ERA.NET3/2021/83/I4BAGS/2022 (M-ERA.NET I4Bags project) and InnovativeSMEs/4/100/5G\_Foil/2023 (EUREKA-Eurostars 5G\_Foil project).

## INTRODUCTION

Microwave dielectric-resonator techniques have matured into powerful, non-destructive probes of sheet resistance  $Rs$  and conductivity  $\sigma$  in thin conductive layers. The inverted Single-Post Dielectric Resonator (iSiPDR) extends the classical single-post design to a two-dimensional scanner that maps  $Rs$  with sub-millimetre resolution over panels as large as 10×10 cm<sup>2</sup>.

Accurate electrode parameters are indispensable for electro-thermal design of lithium-ion cells and for emerging quality-assurance. In this work we focus on a 10 GHz iSiPDR scanner and benchmark its performance on a commercially available single-side-coated graphite anode sheet (41 μm graphite on 9 μm Cu foil). Local (quasi-point-wise) measurements are compared to those with a high-Q ruby dielectric resonator (RuDR).

## METHODOLOGY

### I. Measurement Method

#### A. 10 GHz iSiPDR Scanner

The iSiPDR as used in the setup of Fig. 1 employs a single low-loss dielectric pill inverted into a copper cavity and supports the TE01d-like mode. A sample-under-test is inserted through a fixed slot and placed in the region between the dielectric pill and the ground plane. The electric field in this region is well-controlled but relatively weak, which allows testing relatively high-loss (high-conductivity) materials. After inserting the material sample, the resonant frequency is slightly shifted while the Q-factor is substantially lowered, maintaining however the resonance at a detectable level.

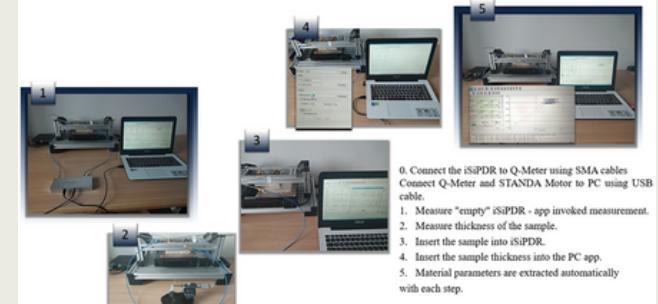
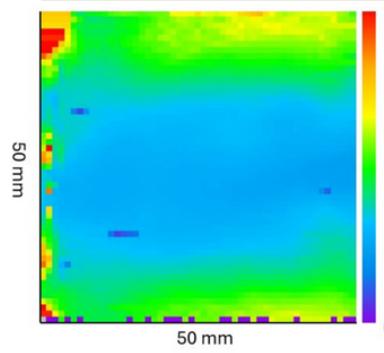




Fig. 1 Material Measurement Procedure on 10 GHz inverted Single-Post Dielectric Scanner

## RESULTS & DISCUSSION



Two-dimensional maps of surface resistance extracted by 10 GHz iSiPDR of Graphite on Copper foil

TABLE I. Surface resistance and derived conductivity for Graphite and Copper surfaces; values are means of sixteen repeats

| f [GHz]       | Electrode side | Rs [mΩ sq⁻¹] | σ [S m⁻¹]              | δ [μm] |
|---------------|----------------|--------------|------------------------|--------|
| 10.21 (SiPDR) | Graphite       | 825 ± 54.5   | 1.85 × 10 <sup>5</sup> | 11.6   |
| 10.21 (SiPDR) | Graphite       | 799 ± 22     | 1.91 × 10 <sup>5</sup> | 11.4   |
| 13.76 (RuDR)  | Graphite       | 661 ± 35     | 1.25 × 10 <sup>5</sup> | 12.1   |
| 13.76 (RuDR)  | Cu             | 31.5 ± 0.3   | 5.51 × 10 <sup>5</sup> | 0.58   |

## CONCLUSION

- 10 GHz inverted SPDR scanner + retro-modelling gives 2%-repeatable  $Rs$  maps over 90 mm in ~15 min.
- Combined scanner + model achieves ±5% uncertainty for graphite coatings on copper.
- Retro-modelling removes empirical scaling, linking fast imaging with rigorous EM simulation.
- Dual-mode RuDR validation captures both DC-like and skin-depth-limited regimes in one dataset.
- Method scales to a wide range of cathodes (incl. Ni-rich oxides, solid-state sulfides) spanning ~6 orders of resistivity.
- Current limitations: need accurate layer thickness and care near edges/tabs to avoid mapping artifacts.