Fabry-Perot Open Resonator

Dielectrics

Non-contact FPOR measurements deliver ε and tanδ of bulk dielectrics.

Polymers

The open resonator quantifies ε and tanδ of low-loss polymer sheets without electrodes.

Ultra-Thin FIlms

FPOR resolves dielectric properties of films just a few µm thick by analysing minute Q-factor shifts,

Ω

Higly-Resistive Semiconductors

extracts bulk resistivity of semiconductors like Si or SiC.

  • Frequency range:
10 – 130 GHz*
  • Dielectric constant:
Dk = 1 – 15 (achievable accuracy ± 0.2 %)
  • Loss tangent:
Df > 5 × 10–6 (achievable accuracy ± 2 %)
  • Sample thickness:
1 µm – 3 mm
  • Sample diameter:
50 – 150 mm
  • Measurement time:
> 1 minute
  • Temperature:
room, 0 – 80 °C (on request)
  • In-plane anisotropic materials can be measured
  • Fully automated and software-controlled measurement

*Available also in various frequency-range configurations (e.g. 10 – 26.5 GHz, 10 – 43 GHz, 10 – 50 GHz, 10 – 67 GHz, 10 – 110 GHz, etc.)

Overview

Results 1 – wykres Results 2 – wykres
Fig. 1 Overview of the FPOR measurement capabilities. Unique possibility of having a single measurement fixture for the whole 10–170 GHz range.

Repeatability

Results 3 – wykres Results 4 – wykres
Fig. 2 Fused silica wafer (148.15 ± 0.36 µm) measured 10 times, each time removing and inserting the sample again. Dk uncertainty bars arise from thickness uncertainty; Df bars from signal-to-noise ratio. Outstanding Dk repeatability of 0.15 %!
Results 5 – wykres Results 6 – wykres
Fig. 3 COP foil (100 ± 1 µm) measured 10 times; Dk repeatability ± 0.2 % is now driven mainly by the ± 1 % thickness uncertainty.

Polymers

Results 7 – wykres Results 8 – wykres
Fig. 4 FEP teflon foil (101.7 ± 3.5 µm). Dk uncertainty from thickness; Df uncertainty from signal-to-noise ratio.
Results 9 – wykres Results 10 – wykres
Fig. 5 PVC foil (147.1 ± 4 µm). Dk uncertainty from thickness; Df from signal-to-noise ratio.

Ultra-thin films

Results 11 – wykres Results 12 – wykres
Fig. 6 PET foil (156 ± 4.5 µm). Dk and Df uncertainties as above.
Results 13 – wykres Results 14 – wykres
Fig. 7 Mylar foil (6 ± 0.5 µm). Uncertainty bars as defined above.
Results 15 – wykres Results 16 – wykres
Fig. 8 PEEK foil (26 ± 0.5 µm). Uncertainty bars as defined above.

In-plane anisotropy

Results 17 – wykres Results 18 – wykres
Fig. 9 Single-crystal X-cut quartz (494.6 ± 1.5 µm). Uncertainty bars as defined above.
Results 19 – wykres Results 20 – wykres
Fig. 10 Single-crystal R-cut sapphire (115.4 ± 1.2 µm). Uncertainty bars as defined above.
Results 21 – wykres Results 22 – wykres
Fig. 11 Single-crystal R-cut sapphire (244.8 ± 2.5 µm). Uncertainty bars as defined above.

Highly-resistive semiconductors

Results 23 – wykres Results 24 – wykres
Fig. 12 Silicon (383.3 ± 1 µm). Dk uncertainty from thickness; Df from signal-to-noise ratio.

Electrically-thick samples

Results 25 – wykres Results 26 – wykres
Fig. 13 Sapphire window (1980 ± 1 µm). Uncertainty bars as defined above.
Results 27 – wykres Results 28 – wykres
Fig. 14 Sapphire window (1017.5 ± 3 µm). Uncertainty bars as defined above.
Results 29 – wykres Results 30 – wykres
Fig. 15 Sapphire window (267 ± 1.5 µm). Uncertainty bars as defined above.

Link to contact us via form:

Dielectric measurements with a Fabry-Perot open resonator (up to 130 GHz)

Related Products

D-Band Fabry-Perot Open Resonator for Dielectrics
D-Band Fabry-Perot Open Resonator for Dielectrics
Broadband Plano-Concave Fabry-Perot Open Resonator for Conductors
Broadband Plano-Concave Fabry-Perot Open Resonator for Conductors
Fabry Perot Open Resonator for Liquid
Fabry Perot Open Resonator for Liquid